Энергия Гиббса. Энергия Гельмгольца. Направленность химических реакций. Свободная энергия гельмгольца, энергия гиббса Энергия Гельмгольца химической реакции

Напомним, что второй закон термодинамики определяет критерии самопроиз­вольного протекания процессов в изолированных системах. Однако, подобные условия (отсутствие обмена энергией и веществом с окружающей средой) реализуются сравнительно редко. Поэтому представляется важным сформулировать подобного рода критерии для закрытых систем, где возможен обмен энергией с окружающей средой. Для этого нам потребуется определить две новые функции состояния – энергию Гельмгольца и энергию Гиббса.

Работа процесса в общем случае, как это уже говорилось, зависит от пути процесса. Работа неравновесного процесса меньше, чем работа равновесного процесса, протекающего между теми же начальным и конечным состояниями системы. В самом деле, исходя из уравнения первого закона термодинамики (I, 7а) и уравнения (II, 17а), получаем в общем случае:

δW = dQ – dU £ TdS – dU (III, 1)

Величина правой части этого уравнения не зависит от того, равновесен или неравновесен процесс. В случае равновесного процесса:

dW = dW равн. = TdS – dU (III, 2)

Для неравновесного процесса:

dW < TdS – dU (III, 3)

Сравнивая уравнения (III, 2) и (III, 3), получаем:

dW равн. > dW

Таким образом, работа равновесного процесса максимальна.

Максимальная работа не зависит от пути, а определяется лишь начальным и конечным состояниями системы. Так, при S = const (равновесный адиабатный процесс)

dW = –dU и W макс. = – (U 2 – U 1) (III, 4)

т. е. величина максимальной работы определяется изменением внутренней энергии системы.

Интегрируя при постоянной Т уравнение (III, 2), получаем:

W макс. = T (S 2 – S 1) – (U 2 – U 1) (III, 5)

W макс. = (U 2 – TS 2) +(U 1 – TS 1 ) (III, 6)

Выражения, стоящие в скобках, являются функциями состояния системы. Введя в уравнение (III, 6) обозначение

F º U – TS (III, 7)

получаем (при T = const)

W макс. = – F 2 + F 1 = – (F 2 – F 1) = –DF (III, 8)

где F – функция состояния, называемая энергией Гельмгольца (в настоящее время для обозначения энергии Гельмгольца также используется символ А ). Таким образом, максимальная работа при изохорно-изотермических равновесных процессах равна убыли энергии Гельмгольца системы.

Переписав уравнение (III, 3) в виде

U = F + TS

можно рассматривать внутреннюю энергию, как состоящую из двух частей – свободной энергии F и связанной энергии TS. Лишь часть внутренней энергии – свободная энергия, которую система отдает вовне при T = const , может превратиться в работу (условием для такого превращения является равновесность процесса; в неравновесном процессе свободная энергия частично или полностью переходит в теплоту). Другая часть внутренней энергии – связанная энергия – при изменении системы, если Т = const , не дает работы, а переходит только в теплоту.


Энтропия есть, таким образом, фактор ёмкости связанной энергии.

Для процессов, протекающих с изменением температуры (T const ), деление внутренней энергии на свободную и связанную не может быть проведено и, следовательно, сами термины не имеют общего значения. Поэтому будем пользоваться для функции F названием энергия Гельмгольца.

Полный дифференциал функции F можно получить, дифференцируя уравнение (III, 7):

dF º dU TdS SdT (III, 9)

Сопоставив это уравнение с уравнениями (III, 2) и (III, 3), получим в общем виде:

dF £ -SdT – dW (III, 10)

Откуда при Т = const

(dF) T £ –dW (III, 11)

F 2 – F l = DF < W; –(F 2 – F 1 ) > W (III, 12)

Выражение (III, 12) отражает уже известное нам положение, что работа неравновесного процесса меньше работы равновесного процесса.

Если при равновесном процессе совершается только работа расширения (dW = PdV), то из уравнения (III, 10) получаем:

dF = -SdT – PdV (III, 13)

Это выражение является полным дифференциалом функции F при переменных V и Т.

Полагая T = const и V = const , а также при условии отсутствия всех видов работы (dW = 0) , получаем из уравнения (III, 10):

(F ) V, T £ 0 (III, 13а)

т. е., энергия Гельмгольца системы, находящейся при постоянных V и Т не изменяется при равновесных процессах, при неравновесных процессах ее значение убывает.

Так как система, в которой протекают (и могут протекать) только равновесные процессы, бесконечно близка к равновесию, то сформулированные свойства энергии Гельмгольца позволяют судить о том, находится ли данная система в равновесии или нет. В последнем случае направление неравновесного процесса определяется убылью энергии Гельмгольца при постоянных температуре и объеме системы.

Условия, которым должны удовлетворять процессы, для того чтобы по изменениям величины F можно было судить о направлении этих процессов, иные, чем для энтропии. Для энтропии это были условия постоянства внутренней энергии и объема (изолированная система), для энергии Гельмгольца это условие постоянства объёма и температуры – легко измеримых параметров системы. Энергия Гельмгольца, являясь производным понятием по отношению к энтропии, представляет собой практически более удобный критерий направления процессов, чем энтропия.

Изложенные соображения могут быть выражены следующим положением: энергия Гельмгольца системы, находящейся при постоянных объёме и температуре, уменьшается при неравновесных (самопроизвольных) процессах. Когда она достигает минимального значения, совместимого с данными V и Т, система приходит в равновесное состояние.

Любая система (например, сосуд с реакционной смесью), находясь в контакте с источником теплоты, в результате теплообмена будет принимать какое-то количество теплоты. В случае бесконечно малого необратимого процесса это количество теплоты будет равно dQ . Увеличение энтропии dS при этом будет больше, чем приведённая теплота:

dS > dQ /T ,

откуда получаем TdS > dQ

и, следовательно, dQ - TdS < 0 .

Если при этом из всех видов работы совершается только работа расширения, то в соответствии с первым началом термодинамики

dQ > dU + pdV.

dU + pdV - TdS < 0 (3.6)

Если при протекании данного процесса не происходит изменения температуры и объём сохраняется постоянным (V = const, Т = const), это выражение переходит в неравенство

(dU - TdS ) V < 0

или d (U - TS ) T, V < 0 .

Величина U - ТS = А называется изохорно-изотермическим потенциалом или свободной энергией при постоянном объёме или энергией Гельмгольца . Часто её называют также и функцией Гельмгольца.

Если же процесс проводится при постоянных давлении и температуре (р = const, Т = const), то неравенство (3.6) можно переписать так:

d (U + pV - TS ) T, p < 0

или, поскольку U + pV = H ,

d (H - TS ) T, p < 0

Величина Н - ТS = G называется изобарно-изотермическим потенциалом, или свободной энергией при постоянном давлении, или энергией Гиббса (функцией Гиббса).

Размерность СИ энергии Гиббса и энергии Гельмгольца - Дж/моль.

Таким образом, в необратимых процессах при постоянной температуре энергия Гиббса системы, как и энергия Гельмгольца убывает:

(dG ) T, p < 0 ,

( ) T, V < 0 .

Если же рассматриваемый процесс является обратимым, то в вышепри­ведённых уравнениях знаки неравенства меняются на знаки равенства:

(dG ) T, p = 0 ,

( ) T, V = 0 .

Энергия Гельмгольца и энергия Гиббса, являются термодинамическими функциями состояния, иначе называемыми термодинамическими потенциалами, так как они характеризуют работу, совершаемую системой, учитывая при этом одновременно изменение энтропии (в виде величины TDS ) и тепловой энергии (DU или соответственно).

Согласно полученным уравнениям энергия Гельмгольца (в изохорных условиях) и энергия Гиббса (в изобарных условиях) являются критерием направления самопроизвольного процесса, а также критерием достижения равновесия. А именно:

1) в самопроизвольном процессе энергия Гиббса G и энергия Гельмгольца А системы уменьшаются. Иными словами, процесс возможен, если для него соблюдается условие

DG < 0 и < 0 .

2) При равновесии в системе её G и А достигают какого-то минимального значения и дальнейшего уменьшения их не происходит:

G = min и А = min,

DG = 0 и = 0 .

Резюмируя, можно вывести уравнения, характеризующие взаимосвязь энергии Гельмгольца и энергии Гиббса с другими термодинамическими функциями:

= dU - ТdS (3.7)

dG = - ТdS (3.8)

После интегрирования уравнений (3.7) и (3.8) получаются выражения, более удобные при практических расчётах:

= DU - ТDS

DG = - ТDS, (3.9)

или для процессов, идущих при стандартных условиях:

DА о = DU о - ТDS о

DG о = DН о - ТDS о.

Отрицательное значение DG о может быть получено в случае отрицательного значения DН о или положительного значения DS о , что означает уменьшение энергии и увеличение неупорядоченности. Если значение TDS о по абсолютной величине намного меньше, чем DН о , знак DG о будет определяться знаком DН о (и наоборот).

В любом случае самопроизвольный процесс приводит к минимально возможному значению H - TS для системы при постоянных температуре и давлении.

Стандартное изменение энергии Гиббса системы в ходе химической реакции DG о r может быть рассчитано с использованием справочных значений DG о f (относящихся к образованию 1 моля данного соединения из простых веществ) по уравнениям:

DG о r = å (n i DG о f i ) прод - å (n i DG о f i ) исх

или, с учётом уравнения (3.9), по стандартным изменениям энтальпии и энтропии в ходе реакции DH о r и TDS о r :

DG о r = DH о r - TDS о r (3.10)

Стандартное изменение энергии Гельмгольца системы в ходе химической реакции DА о r требуется реже и, как правило, вычисляется по уравнению, устанавливающему взаимосвязь DА о и DG о :

DА о = DG о - DnRT ,

где Dn - изменение числа молей газообразных веществ при протекании реакции.

Максимальная работа процесса и химическое сродство

Величина энергии Гиббса и, соответственно, при постоянном объёме - энергии Гельмгольца характеризует максимальное количество работы, которое может быть получено при обратимом равновесном процессе. Так как в других процессах рассеяние энергии будет намного бóльшим, то работу, получаемую от системы в обратимом равновесном изохорном процессе, называют максимальной работой :

w max = -

При постоянном давлении часть работы будет расходоваться на расширение или сжатие системы (рDV ), поэтому в изобарных условиях та же система сможет произвести полезной работы меньше, чем w max на величину рDV . Работа, которая может быть совершена системой в обратимом равновесном изобарном процессе, называется максимальной полезной работой :

w’ max = w max - pDV

Поскольку между энергией Гиббса и энергией Гельмгольца существует соотношение DG = + pDV , можно записать

w’ max = -DG .

Максимальная и, в особенности, максимальная полезная работа химического процесса может служить мерой способности веществ вступать между собой в химическую реакцию, т. е. мерой химического сродства.

Химическое равновесие

Химическое равновесие – это термодинамическое равновесие в системе, в которой возможны прямые и обратные химические реакции.

При определенных условиях активности реагентов могут быть заменены концентрациями или парциальными давлениями. В этих случаях константа равновесия, выраженная через равновесные концентрации K c или через парциальные давления K p , принимает вид

(4.11)
(4.12)

Уравнения (4.11) и (4.12) представляют собой варианты закона действующих масс (ЗДМ) для обратимых реакций в состоянии равновесия. При постоянной температуре отношение равновесных концентраций (парциальных давлений) конечных продуктов к равновесным концентрациям (парциальным давлениям) исходных реагентов, возведенных соответственно в степени, равные их стехиометрическим коэффициентам, величина постоянная .

Для газообразных веществ K p и K c связаны соотношением K p = (RT ) Δn K c , где Δn – разность числа молей начальных и конечных газообразных реагентов.

Константа равновесия определяется при известных равновесных концентрациях реагирующих веществ или по известной ΔG ° химической реакции

Произвольную обратимую химическую реакцию можно описать уравнением вида:

aA + bB Û dD + eE

В соответствии с законом действующих массв простейшем случае скорость прямой реакции связана с концентрациями исходных веществ уравнением

v пр = k пр С А а С В b ,

а скорость обратной реакции - с концентрациями продуктов уравнением

v обр = k обр С D d С E e .

При достижении равновесия эти скорости равны друг другу:

v пр = v обр

Отношение друг к другу констант скорости прямой и обратной реакций будет равно константе равновесия :


Так как это выражение основано на учёте количества реагентов и продуктов реакции, оно является математической записью закона действующих масс для обратимых реакций .

Константа равновесия, выраженная через концентрации реагирующих веществ, называется концентрационнойи обозначается К с . Для более строгого рассмотрения следует вместо концентраций использовать термодинамические активностивеществ а = fC (где f - коэффициент активности). При этом речь идёт о так называемой термодинамической константе равновесия


При малых концентрациях, когда коэффициенты активности исходных веществ и продуктов близки к единице, К с и К а практически равны друг другу.

Константа равновесия реакции, протекающей в газовой фазе, может быть выражена через парциальные давления р веществ, участвующих в реакции:


Между К р и К с существует соотношение, которое можно вывести таким образом. Выразим парциальные давления веществ через их концентрации с помощью уравнения Менделеева - Клапейрона:

pV = nRT ,

откуда p = (n /V )RT = CRT .

Размерность констант равновесия зависит от способа выражения концентрации (давления) и стехиометрии реакции. Часто она может вызывать недоумение, например, в рассмотренном примере [моль -1 м 3 ] для К с и [Па -1 ] для К р , но в этом нет ничего неверного. При равенстве сумм стехиометрических коэффициентов продуктов и исходных веществ константа равновесия будет безразмерной.

ГЕЛЬМГОЛЬЦА ЭНЕРГИЯ (изохорно-изометрический потенциал - свободная энергия), один из потенциалов термодинамических, обозначаемый F (иногда А) и определяемый разностью между внутренней энергией (U) и произведением термодинамической температуры (Т) на энтропию (S): F = U - TS. Работа системы в равновесном изотермическом процессе равна убыли энергии Гельмгольца; самопроизвольно такой изотермический процесс может протекать только в сторону уменьшения Гельмгольца энергии.

  • - Институ́т Гельмго́льца см. Московский научно-исследовательский институт глазных болезней Гельмгольца...

    Москва (энциклопедия)

  • - Здание института Гельмгольца.Москва. Моско́вский нау́чно-иссле́довательский институ́т глазны́х боле́зней Гельмго́льца. Основан в 1935 на базе Алексеевской глазной больницы...

    Москва (энциклопедия)

  • - уравнение с частными производными вида где с - постоянное число. К Г. у. приводит изучение установившихся колебательных процессов. При Г. у. переходит в Лапласа уравнение...

    Математическая энциклопедия

  • Большой медицинский словарь

  • - теория физиологического механизма аккомодации глаза, согласно которой при сокращении ресничной мышцы происходит расслабление связки ресничного пояска и увеличение кривизны хрусталика...

    Большой медицинский словарь

  • - теория, согласно которой анализ звуков по высоте объясняется тем, что звучащий тон приводит в соколебательные движения по принципу резонанса лишь те волокна базальной мембраны улитки, длина и натяжение которых...

    Большой медицинский словарь

  • - теория цветоощущения, предполагающая существование в глазу особых элементов для восприятия красного, зеленого и фиолетового цветов; восприятие других цветов обусловлено взаимодействием этих элементов...

    Большой медицинский словарь

  • - подход к исследованию безвихревых течений идеальной несжимаемой жидкости при наличии поверхностей тангенциального разрыва в отсутствие массовых сил...

    Энциклопедия техники

  • - наименование сов. универс...
  • - то же, что изохорно-изотермический потенциал...

    Большой энциклопедический политехнический словарь

  • - см. Гельмгольца теория слуха...

    Большой медицинский словарь

  • - два круговых контура электрического тока одинакового диаметра, расположенных параллельно на расстоянии радиуса, с центрами на общей оси. Особенностью Г. к. является однородность магнитного поля в...

    Геологическая энциклопедия

  • - см. Гельмгольца кольца...

    Геологическая энциклопедия

  • - один из потенциалов термодинамических, обозначаемый F и определяемый разностью между внутренней энергией и произведением термодинамической температуры на энтропию: F = U - TS. Работа системы в равновесном...

    Большой энциклопедический словарь

  • - СВЧ-эне/ргия,...

    Слитно. Раздельно. Через дефис. Словарь-справочник

  • - ...

    Орфографический словарь-справочник

"ГЕЛЬМГОЛЬЦА ЭНЕРГИЯ" в книгах

М. И. АВЕРБАХ ВОСПОМИНАНИЯ О В. И. ЛЕНИНЕ (Речь, произнесенная на общем собрании сотрудников, больных и посетителей городской глазной больницы им. Гельмгольца)

Из книги Ленин. Человек - мыслитель - революционер автора Воспоминания и суждения современников

03. Энергия, сила, импульс, кинетическая энергия, теплород…

Из книги Механика тел автора Данина Татьяна

03. Энергия, сила, импульс, кинетическая энергия, теплород… В физике существует немалая путаница, связанная с использованием понятий «энергия», «сила», «импульс» и «кинетическая энергия».Сразу скажу, что, несмотря на то, что эти четыре понятия существуют в физике

Галактическая Энергия – Энергия Мысли

Из книги Золотые ангелы автора Климкевич Светлана Титовна

Галактическая Энергия – Энергия Мысли 543 = Галактическая энергия – это энергия мысли = «Числовые коды». Книга 2. Крайон Иерархия 06.09.2011 г.Я ЕСМЬ Что Я ЕСМЬ!Я ЕСМЬ Манас! Приветствую Тебя, Владыка!Что мне сегодня надо знать?Светлана, Дорогая! Умница ты моя! Как хорошо, что ты

А энергия – Космическая энергия (Кундалини)

Из книги Ангелы автора Климкевич Светлана Титовна

А энергия – Космическая энергия (Кундалини) 617 = Только добро встречая зло и не заражаясь им, побеждает зло = Утратив веру, человек теряет способность любить = «Числовые коды». Книга 2. Крайон Иерархия 11.04.14 г.Я ЕСМЬ ЧТО Я ЕСМЬ!Я ЕСМЬ Отец Небесный! Я ЕСМЬ Вечность!Светлана, ты

МАГНИТНАЯ ЭНЕРГИЯ - ЭНЕРГИЯ НОВОГО ВРЕМЕНИ (KPАЙON)

Из книги Крайон. Я выбираю тебя. Ченнелинг через Нама Ба Хала автора Крайон Нам Ба Хал

МАГНИТНАЯ ЭНЕРГИЯ - ЭНЕРГИЯ НОВОГО ВРЕМЕНИ (KPАЙON) Мой дорогой друг, ты - сияющий Высший Свет, решивший когда-то в теле человека с целью приобрести жизненный опыт погрузиться в призрачную реальность, которой, собственно говоря, и не существует.Я, Крайон, приветствую тебя

Ангел – Вселенская Энергия – Энергия Жизни

Из книги Я ЕСМЬ Вечность. Литературные беседы с Творцом (сборник) автора Климкевич Светлана Титовна

Ангел – Вселенская Энергия – Энергия Жизни 958 = Есть много вещей которые не увидишь глазами, их надо видеть душой – в том-то и сложность = «Числовые коды». Книга 2. Крайон Иерархия И тот в ком светоч разума горит, Дурных деяний в мире не свершит. Ливий Тит (380 лет до

ЭНЕРГИЯ СВОБОДНАЯ – ЭНЕРГИЯ СВЯЗАННАЯ

Из книги Словарь по психоанализу автора Лапланш Ж

ЭНЕРГИЯ СВОБОДНАЯ – ЭНЕРГИЯ СВЯЗАННАЯ Нем.: freie Energie – gebundene Energie. – Франц.: йnergie libre – йnergie liйe. – Англ.: free energy – bound energy. – Исп.: energia libre – energia ligada. – Итал.::energia libйra – energia legata. – Португ.: energia uvre – energia ligada. Термины, которые подразумевают, с точки зрения экономической,

12. Энергия действия и энергия сдерживания

Из книги Образ жизни, который мы выбираем автора Фёрстер Фридрих Вильгельм

12. Энергия действия и энергия сдерживания Упражнения в энергии сдерживания необычайно важны и для развития энергии действия. Кто хочет совершить что-то определенное, тот должен все свои силы сконцентрировать на одной цели. Поэтому он должен решительно противостоять

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

ЭНЕРГИЯ ИЗ СРЕДЫ - ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ - ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА - ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ Есть множество веществ помимо топлива, которые возможно смогли бы давать энергию. Огромное количество энергии заключено, например, в

4. Изопроцессы в термодинамике. Энергия Гельмгольца

Из книги Физическая химия: конспект лекций автора Березовчук А В

4. Изопроцессы в термодинамике. Энергия Гельмгольца 1. Изотермический – Т= const так как 2. Изохорный – V = const?А = 0,?А = pd? = 0,?Q = dU + pd?,?Q = CvdT.3. Изобарный – P = const?А = pd?,A = pV2 – pV1.4. Адиабатический – ?Q = 01) ?A = –dU,A = –CV(T2 – T1), T2 > T1;2) pd?= –CvdT, действие, обратное логарифму –

6. «Теория символов» (или иероглифов) и критика Гельмгольца

Из книги автора

6. «Теория символов» (или иероглифов) и критика Гельмгольца В дополнение к сказанному выше об идеалистах, как соратниках и преемниках эмпириокритицизма, уместно будет отметить характер махистской критики некоторых затронутых в нашей литературе философских положений.

Что больше: энергия, выделяемая при распаде одного ядра урана, или энергия, затрачиваемая комаром на один взмах крыла?

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Что больше: энергия, выделяемая при распаде одного ядра урана, или энергия, затрачиваемая комаром на один взмах крыла? Энергия, выделяемая при распаде одного ядра урана, составляет величину порядка 10 триллионных джоуля, а затрачиваемая комаром на один взмах крыла –

автора

Из книги Зрение на 100%. Фитнес и диета для глаз автора Зяблицева Маргарита Александровна

Комплекс, рекомендованный институтом Гельмгольца Данный курс улучшения зрения рекомендован институтом Гельмгольца. Отдельные рекомендации приведены после описания упражнений.1. Выполняется сидя. Крепко зажмурить глаза на 3–5 секунд. Затем открыть глаза на 3–5 секунд.

"Глазное зеркало " Германа Гельмгольца

Из книги Воровство и обман в науке автора Бернатосян Сергей Г

"Глазное зеркало " Германа Гельмгольца А вот пример другого несостоявшегося открытия. В свое время физиолог Брюкке сильно заинтересовался поиском специального средства, которое дало бы возможность всесторонне изучить глазное яблоко. Изнуряя себя непосильным трудом, он

Термодинамические потенциалы. Энергия Гиббса. Энергия Гельмгольца

В изолированных системах энтропия только увеличивается и при равновесии достигает максимума. По этой причине она должна быть использована в качестве критерия возможности протекания самопроизвольных процессов в таких системах. При этом на практике большинство процессов происходит в неизолированых системах, вследствие чего для них нужно выбрать свои критерии направления самопроизвольных процессов и достижения равновесия. Такие критерии выражаются иными термодинамическими функциями, отличными от энтропии. Οʜᴎ называются характеристическими функциями.

Рассмотрим объединœенный первый и второй закон термодинамики в дифференциальной форме:

TdS ³ dU + dA" + pdV, (36).

Выразим отсюда элементарную полезную работу dA":

dA" £ -dU + TdS - pdV, (37)

Рассмотрим два случая:

1) Пусть система переходит обратимо из состояния 1 в состояние 2 при V = const, Т = const, ᴛ.ᴇ. рассмотрим обратимый изохорно-изотермический процесс. Получим (т.к. dV = 0):

dА"= -dU +TdS – pdV = - dU+d(TdS) = -d(U –TS). (38)

Под знаком дифференциала стоит некоторая функция состояния. Обозначим ее через F:

U – TS º F (39)

и назовем энергией Гельмгольца (старое название: изохорно-изотермический потенциал). Тогда получим:

dА" = – dF V,T . (40)

В случае если проинтегрировать (40), то получим:

А" = – DF V,T (41)

величина DF = F 2 – F 1 – изменение энергии Гельмгольца, а

–DF = F 1 – F 2 – убыль энергии Гельмгольца.

Энергия Гельмгольца является одним из так называемых термодинамических потенциалов .

Термодинамический потенциал - ϶ᴛᴏ такая функция состояния системы, убыль которой при обратимом переходе из состояния 1 в состояние 2 при двух постоянных параметрах (x и y) равна максимальной полезной работе обратимого процесса А"= -∆П х,у

2) Рассмотрим обратимый изобарно-изотермический процесс (р = cosnt, Т = cosnt) и проанализируем соотношение (38):

dА" = – dU +TdS – pdV = – dU +d(TS) – d(рV) = – d (U – TS + pV) = – d(H – TS).

Под знаком дифференциала стоит другая функция состояния. Обозначим ее через G:

Н – TS º G(42)

и назовем энергией Гиббса (старое название: изобарно-изотермический потенциал). Тогда получим:

dА" = – dG р, Т (43)

Проинтегрировав (43) получаем:

А" = – DG р, Т (44)

Здесь DG = G 2 – G 1 – изменение энергии Гиббса, – DG=G 1 – G 2 – убыль энергии Гиббса.

В ходе обратимого перехода системы из состояния 1 в состояние 2 при постоянных давлении и температуре совершаемая системой полезная работа равна убыли энергии Гиббса (– DG).

Стоит сказать, что для необратимых процессов, т.к. А" необр <А" обр, можно записать

А" необр < -∆F V , T и А" необр < -∆G p , T

Используя соотношение (38), можно показать, что при определœенных условиях термодинамическими потенциалами, кроме G, F, являются также внутренняя энергия U (изохорно-изоэнтропийный потенциал) и энтальпия Н (изобарно-изоэнтропийный потенциал),

Изменения термодинамических потенциалов можно рассматривать как критерии возможности протекания самопроизвольных процессов и равновесия в термодинамических системах.

В ходе самопроизвольного процесса, протекающего в соответствующих условиях, система сама совершает работу (А">0) тогда при V,T=const, для необратимого самопроизвольного процесса

-∆F>0; ∆F<0; F 2 -F 1 <0; F 2

а при p,V=const DG>0, DG<0, G 1 -G 2 <0, G 2 -G 1

при равновесии DF V ,T = 0, DG р,Т = 0.

Термодинамические потенциалы в ходе самопроизвольного процесса уменьшаются и достигают минимума при равновесии.

В случае если нарисовать как и для энтропии графики изменения термодинамического потенциала П исходя из пути процесса, то экстремальной точкой, соответствующей равновесию, будет минимум (в отличие от энтропии):

АВ – необратимый самопроизвольный процесс (здесь DП х,у < 0);

ВA – необратимый несамопроизвольный процесс (здесь DП х,у > 0);

точка В – соответствует равновесному состоянию (здесь DП х,у = 0).

2.5 Характеристические функции. Уравнения Гиббса–Гельмгольца.

Характеристическими функциями называются такие функции состояния системы, посредством которых и их частных производных бывают выражены в явной форме всœе термодинамические свойства системы.

Из дифференциальной формы объединœенного первого и второго законов термодинамики для обратимых процессов выразим величину dU:

TdS = dU + dA" + pdV, откуда

dU = TdS – dA" – pdV. (45)

В случае если полезная работа отсутствует (ᴛ.ᴇ. dA" = 0), то получим:

dU = TdS – pdV (46)

Вспомним теперь следующие соотношения:

G º H – TS = U + pV – TS (47)

F º U – TS (48)

В случае если найти значения полных дифференциалов dG, dF из соотношений (43)-(44) и учесть соотношение (46) для dU, то можно получить следующие выражения для dG, dF:

dG = dU + pdV + Vdp - TdS -SdT =Vdp – SdT (49)

dF = dU - TdS - SdT = – pdV – SdT (50)

На основании соотношений (49)–(50) можно прийти к выводам, что

DF = DU – TDS (56)

Так как, , то (57)

Последние два равенства и есть искомые зависимости и от температуры и их называют уравнениями Гиббса-Гельмгольца.

Термодинамические потенциалы. Энергия Гиббса. Энергия Гельмгольца - понятие и виды. Классификация и особенности категории "Термодинамические потенциалы. Энергия Гиббса. Энергия Гельмгольца" 2017, 2018.

Все реальные системы неизолированные; подавляющее большинство из них, являются открытыми. Для подобных систем только с помощью энтропии нельзя охарактеризовать направление процесса. В связи с этим вводятся еще две термодинамические функции состояния - энергия Гиббса и энергия Гельмгольца, с их помощью появляется возможность определить условия самопроизвольных и равновесных процессов в изолированных системах.

Энергия Гиббса и энергия Гельмгольца

Для определения направления процесса в неизолированных системах необходимо рассматривать не только систему, но и среду, окружающую эту систему.

Энтропию как термодинамическую функцию состояния можно связать с теплотой обратимого процесса. Если бесконечно малое кол-во энергии δq предается системе обратимым способом в виде теплоты при температуре Т , в этом случае энтропия изменяется как:

δS≥ δq обр /Т (*) (где знак больше-самопроизвольный процесс, равно - равновесное состояние системы)

Используя это состношение, рассмотрим случай, когда система отдает теплоту окружающей среде (система в этом случае закрытая) при постоянном объеме. Тогда на основании равенства δq=dU (в изохорно-изотермических процессах теплота процесса равна изменению внутренней энергии) δq можно отождествлять с dU Замена δq на dU в уравнении (*) приводит к следующим результатам:

В случае потери теплоты при постоянном давлении с учетом равенства δq=dН (в изобарно-изотермических процессах теплота процесса равна изменению энтальпии) из уравнения (*) получим

Условия (4.1) и (4.2) позволяют ввести две новые термодинамические функции состояния - энергию Гельмгольца А*(ранее обозначали как F) и энергию Гиббса G, которые определяются следующим образом:

|Уравнения (4.3) и (4.4) связывают между собой пять характеристических функций состояния и дают возможность рассматривать особенности равновесных (если d А = 0 или dG =0 ) и самопроизвольных (когда d А < 0 или dG < 0 ) процессов. |Поясним смысл уравнений (4.3) и (4.4) и правых частей этих равнений при помощи рисунка.

Неизолированная система, обладающая свойствами идеального газа, имеет начальную температуру Т, а температура окружающей среды Тс, ниже начальной температуры системы, т.е. Тс<Т. Система остывает и отдает окр. среде часть своей внутренней энергии (энтальпии) в виде d А или dG , в системе остается запас энергии, соответствующей правой части уравнения 4.3 или 4.4 Если бы температура среды была равна абсолютному нолю и оставалась таковой в течение всего процесса передачи теплоты, то система тоже должна была бы остыть до темепратуры среды,т.е. до абсолютного ноля. При этом система всю свою внутреннюю энергию сообщила бы среде. Однако температура окр. среды (Тс) больше 0.

В соответствии с одной из формулировок второго начала термодинамики (невозможен самопроизвольный переход теплоты от холодного тела к горячему) система может остыть лишь до некоторой конечной температуры Т к. В этих условиях система отдает среде только часть своей внутренней энергии, которую называют свободной энергией . В изобарно-изотермическом процессе она выступает в форме энергии Гиббса dG , а в изохорно-изотермическом - энергии Гельмгольца d А.

Энергия Гиббса (энергия Гельмгольца) - это часть внутренней энергии, которую система может отдать окружающей среде. Именно поэтому ее называют "свободной". Остальная часть внутренней энергии системы, равная теплоте ее нагрева от абсолютного нуля до Т к, остается в системе и не может быть использована вне системы, в данном случае для передачи теплоты из системы в окружающую среду. Оставшаяся часть энергии как бы "заперта" в системе, поэтому ее называют связанной энергией . Связанная энергия контролируется энтропией системы и равна произведению абсолютной температуры на изменение энтропии от абсолютного нуля до абсолютной температуры системы, т. е. TdS или TΔS, что соответствует вычитаемому правой части уравнений (4.3) и (4.4).

Итак, энергия Гиббса и энергия Гельмгольца определяют ту часть теплоты (энергии), которую система может отдать; эта часть равна суммарному запасу энергии системы за вычетом той энергии, которая остается в системе

В соответствии с уравнениями (4.3) и (4.4) энергия Гиббса и энергия Гельмгольца определяются значениями энтальпии и внутренней энергией (ΔН и ΔU), с одной стороны, и энтропии ΔS- с другой, т. е. энтальпийным и энтропийным факторами . Величина ΔН(ΔU) как энтальпийный фактор возрастает по мере агрегации частиц, т. е. отражает стремление частиц объединяться. К процессам, увеличивающим ΔН , относятся сжатие газа, конденсация пара, затвердевание жидкости, ассоциация молекул, синтез молекул из атомов и т. д. Величина ΔS как энтропийный фактор характеризует противоположную тенденцию - стремление частиц к дезинтеграции, переход от порядка к беспорядку, от меньшего беспорядка к большему. К числу процессов, увеличивающих энтропию, можно отнести расширение газа, испарение жидкости, плавление, диссоциацию молекул и др., а же смешение газов, растворение, диффузию и т. д.

wjday.ru - Женский портал - Wjday